Lyndon + Christoffel = digitally convex

نویسندگان

  • Srecko Brlek
  • Jacques-Olivier Lachaud
  • Xavier Provençal
  • Christophe Reutenauer
چکیده

Discrete geometry redefines notions borrowed from Euclidean geometry creating a need for new algorithmical tools. The notion of convexity does not translate trivially, and detecting if a discrete region of the plane is convex requires a deeper analysis. To the many different approaches of digital convexity, we propose the combinatorics on words point of view, unnoticed until recently in the pattern recognition community. In this paper we provide first a fast optimal algorithm checking digital convexity of polyominoes coded by their contour word. The result is based on linear time algorithms for both computing the Lyndon factorization of the contour word, and the recognition of Christoffel factors that are approximations of digital lines. By avoiding arithmetical computations the algorithm is much simpler to implement and much faster in practice. We also consider the convex hull computation and relate previous work in combinatorics on words with the classical Melkman algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a class of Lyndon words extending Christoffel words and related to a multidimensional continued fractions algorithm

We define a class of Lyndon words, called Christoffel-Lyndon words. We show that they are in bijection with n-tuples of relatively prime natural numbers. We give a geometrical interpretation of these words. They are linked to an algorithm of Euclidean type. It admits an extension to n-tuples of real numbers; we show that if the algorithm is periodic, then these real numbers are algebraic of deg...

متن کامل

Counting Lyndon Factors

In this paper, we determine the maximum number of distinct Lyndon factors that a word of length n can contain. We also derive formulas for the expected total number of Lyndon factors in a word of length n on an alphabet of size σ, as well as the expected number of distinct Lyndon factors in such a word. The minimum number of distinct Lyndon factors in a word of length n is 1 and the minimum tot...

متن کامل

On a Class of Lyndon Words Extending Christoffel Words and Related to a Multidimensional Continued Fraction Algorithm

We define a class of Lyndon words, called Christoffel-Lyndon words. We show that they are in bijection with n-tuples of relatively prime natural numbers. We give a geometrical interpretation of these words. They are linked to an algorithm of Euclidean type. It admits an extension to n-tuples of real numbers; we show that if the algorithm is periodic, then these real numbers are algebraic of deg...

متن کامل

Sturmian Words, Lyndon Words and Trees

We prove some new combinatorial properties of the set PER of all words w having two periods p and q which are coprimes and such that w = p + q 2 [4,3]. We show that aPERb U {a, b} = St n Lynd, where St is the set of the finite factors of all infinite Sturmian words and Lynd is the set of the Lyndon words on the alphabet {a, b}. It is also shown that aPERb U {a, b} = CP, where CP is the set of C...

متن کامل

Lyndon factorization of the Thue-Morse word and its relatives

Some attention has recently been given to the Lyndon factorization of infinite words [16], [10], [12]. These works are themselves related to the earlier works by Reutenauer [13] and Varricchio [17], concerned with unavoidable regularities and semigroup theory. The results we present here reinforce those in [10] and [12], and give an additional application of the general Lyndon factorization the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2009